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Introduction
ÅMetallic foam structures
ïOpen cell foams can be fabricated through established foaming processes 

for some alloys (e.g., Al, Cu, Zn)

ïClosed cell foams can be produced via powder metallurgy (e.g., Ti, Ni, Fe)

ïAdditive manufacturing opens new possibilities for novel foam structures 
for a wide range of alloys

ïThis project will use additive manufacturing to create open cell structures 
than can be infiltrated with other alloys to create bi-metallic composites
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Introduction

Å The shape memory effect is well 
documented and being studied for 
numerous applications

Å Change in crystal structure from high 
temperature austenite phase to a low 
temperature martensite phase

Å Plastic strain accommodated by twinning; 
recovered by reverse transformation (heat 
or strain)

Å The objective is to exploit this 
phenomenon to produce beneficial 
residual stresses that inhibit crack growth
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The Innovation
ÅStrain fields within a structure can have a significant impact 

on properties and performance

ÅCracks tend to nucleate from a free surface and grow when 
stress levels exceed the threshold stress intensity factor (DKth)

ÅBelow the threshold level cracks do not grow
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Handbook of Damage Tolerant Design

Objective:

Create a unique bi-metallic

composite structure with a 

carefully designed residual 

stress field that can be

tailored to limit or eliminate

the ability of a surface crack

to propagate through the

structure.



Affecting Crack Driving Force

Crack closure
ïCompressive residual stress may promote 

premature clamping of crack faces 
reducing the effectiveness of cyclic loading

Crack deflection
ïResidual stresses or diagonal 

reinforcements may cause crack 
deflection; deviation away from the plane 
of highest principal normal stress with 
decrease the crack-tip driving force

Interfaces between dissimilar materials
ïCracks may not readily grow between      

Ti-6Al-4V matrix and NiTi
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Impact
This concept could greatly impact the fatigue performance of 
aerospace components through crack closure and/or deflection
ï Improved structural efficiency in damage tolerance limited applications

Potential use in anti-ballistic impact applications through shock 
wave disruption/attenuation
ïMicrometeoroid and Orbital Debris (MMOD) shielding

ïArmored tactical vehicles
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Technical Approach ςProcessing 

The Arcamelectron beam powder bed 
additive manufacturing process was 
used
ïFabrication was done at U. of Texas at 

El Paso (phase I) and Marshal Space 
Flight Center (phase II)

ïThin layer of powder is spread over a 
substrate and fused together using 
electron beam

ïSubstrate platform increments 
downward and the process is repeated 
for another thin powder layer

ïThis process is repeated until the 
desired 3-D structure is created
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Technical Approach ςProcessing 

Utilize additive manufacturing to create open cell net structures 
to be infiltrated with a secondary alloy powder and hot 
consolidated into a fully-dense, multi-alloy material
ïProof of concept with Ti-6Al-4V AM-fabricated material infiltrated with 

commercially-pure titanium and vacuum hot pressed to full density
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Material Design

Periodic cell structure
ïDiagonal crossing pattern

ïApproximately 1mm 
spacing between cell 
centers

Arcamsamples
ïTi-6Al-4V

ïNominal dimensions
Å100mm by 31mm

Å7mm border on sides

Å19mm border on ends
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Material Processing
ÅNi-Ti powder vibrated into open cell samples

ï50.7 at% Ti; 49.3 at% Ni; -140 mesh (<105 mm)

ïAs = 68oC; Af = 109oC; Ms = 78oC; Mf = 38oC

ÅMechanical die is used; material consolidation by hot pressing
ï940oC for 4 hours at 1,000 psi

ÅPerform shape set heat treatment
ï500oC for 15 minutes

ÅCold rolling
ï5% reduction in thickness

ÅMemory activation
ï115oC for 15 minutes
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Material Processing

ÅRadiography of vacuum hot pressed sample performed
ïNo major voids found indicating complete fill of open cells

ïSome incidental porosity found (red circles)
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Hardness Test Results
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Testing performed on X-Z plane with Knoop indenter aligned to:
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Hardness Test Results

Hardness of Arcamproduct is superior to other 
e-beam AM deposition method
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Fatigue Crack Growth Specimen

ÅEccentrically-loaded 
single-edge notch tension 
(ESE(T)) specimen
ïPin loaded

ïTests run in K-control
ÅCrack mouth opening used to 

monitor crack length during 
test

ÅAutomated system 
continuously adjusts load to  
achieve programmed crack-tip 
stress intensity factors (DK)

ÅResidual stress component of 
crack-tip stress intensity 
monitored by tracking zero-
load offset of crack mouth 
opening (similar to cut-
compliance test)
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Residual Stress Determination
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Residual Stress Determination
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Fatigue Crack Growth Testing

ÅConstant-DK test
ïSlope of plotted data is crack 

growth rate (da/dN)
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Results to Date/Summary

ÅMaterial produced
ïWell-consolidated, nearly-fully-dense metallic composite 

ÅMaterial characterized
ïSmall pores, but otherwise well consolidated

ïNo delaminationsor imperfections observed at Ti-6Al-4V/NiTi
interfaces

ÅMaterial tested
ïBi-metallic composite in a state of prestress(residual stress); slight 

material warping observed

ïFatigue crack growth testing revealed that suppression of crack growth 
rates occurred in the NiTi-rich region of the specimen corresponding 
to compressive residual stresses
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Dissemination 

ÅC.A. Brice, W. Tayon, J.A. Newman, R.N. Shenoy, S. Sankaran, 
{Φ DŀǊŘƴŜǊΣ ŀƴŘ ½Φ [ƻŦǘǳǎΣ ά/ƘŀǊŀŎǘŜǊƛȊŀǘƛƻƴ ƻŦ ¢ƛǘŀƴƛǳƳ !ƭƭƻȅǎ 
CŀōǊƛŎŀǘŜŘ ōȅ !ŘŘƛǘƛǾŜ aŀƴǳŦŀŎǘǳǊƛƴƎΣέ ǇǊŜǎŜƴǘŜŘ ŀǘ ǘƘŜ моth

World Conference on Titanium, August 19, 2015, San Diego, 
California.

Å/Φ!Φ .ǊƛŎŜΣ ά.ƛ-metallic Composite Structures with Designed 
LƴǘŜǊƴŀƭ wŜǎƛŘǳŀƭ {ǘǊŜǎǎ CƛŜƭŘΣέ b!{!κ¢a-2014-218174.

ÅJ.A. Newman, C.A. Brice, W.A. Tayon, and K. Cooper, 
άFunctionally Tailored Multi-component Composite Structures 
via Additive aŀƴǳŦŀŎǘǳǊƛƴƎΣέ ƛƴ ǇǊƻƎǊŜǎǎΤ ǘƻ ōŜ ǎǳōƳƛǘǘŜŘ ŀǎ ŀ 
NASA/TM.
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Next Steps
ÅCharacterization of residual strain field
ïMechanical test results suggests variation in residual stress occurs on 

small length scale

ïDigital image correlation should be used to characterize the residual 
strain field on the specimen surface
ÅStrain field determined by tracking relative displacements of speckles on specimen 

surface during mechanical testing

ÅCould characterize shape-memory transformation in NiTiand crack closure

ÅAble to use image correlation on a wide range of length scales (from mm to nm)

ÅFatigue testing could provide additional information
ïCyclic loading but with no crack

ïCracks would naturally initiate, likely at regions of tensile residual stress

ïEquilibrium requires there to be regions of tensile residual stress to 
offset regions of compressive residual stress
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